题目内容
(2005•杭州二模)若(x
-
)6的展开式中的第五项是
,设Sn=x-1+x-2+…+x-n且s=
Sn,则S=( )
| x |
| 1 |
| x |
| 15 |
| 2 |
| lim |
| n→∞ |
分析:由(x
-
)6的展开式中的第五项是
,知T5
(x
)2(-
)4=15x-1=
,解得x=2,Sn=x-1+x-2+…+x-n
=
+
+…+
=1-
.由此能求出S=
Sn的值.
| x |
| 1 |
| x |
| 15 |
| 2 |
| C | 4 6 |
| x |
| 1 |
| x |
| 15 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 n |
| 1 |
| 2 n |
| lim |
| n→∞ |
解答:解:∵(x
-
)6的展开式中的第五项是
,
∴T5=
(x
)2(-
)4=15x-1=
,
解得x=2,
∴Sn=x-1+x-2+…+x-n
=
+
+…+
=
=1-
.
∴S=
Sn
=
(1-
)
=1.
故选A.
| x |
| 1 |
| x |
| 15 |
| 2 |
∴T5=
| C | 4 6 |
| x |
| 1 |
| x |
| 15 |
| 2 |
解得x=2,
∴Sn=x-1+x-2+…+x-n
=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 n |
=
| ||||
1-
|
=1-
| 1 |
| 2 n |
∴S=
| lim |
| n→∞ |
=
| lim |
| n→∞ |
| 1 |
| 2n |
=1.
故选A.
点评:本题考查数列的极限,是基础题.解题时要认真审题,注意三项式定理、等比数列前n项和公式的灵活运用.
练习册系列答案
相关题目