题目内容

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,则目标函数z=x+6y的最大值为18.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合的得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$作出可行域如图,

A(0,3),
化目标函数z=x+6y为y=-$\frac{x}{6}+\frac{z}{6}$,
由图可知,当直线y=-$\frac{x}{6}+\frac{z}{6}$过A时,直线在y轴上的截距最大,z有最大值为18.
故答案为:18.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网