题目内容
7.数列{an}满足${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,则a2017=$\frac{12}{7}$.分析 ${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,可得an+5=an.利用周期性即可得出.
解答 解:∵${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,
∴a2=2a1=$\frac{12}{7}$,a3=a2-1=$\frac{5}{7}$,a4=2a3=$\frac{10}{7}$,a5=a4-1=$\frac{3}{7}$,a6=2a5=$\frac{6}{7}$,…,
∴an+5=an.
则a2017=a403×5+2=a2=$\frac{12}{7}$.
故答案为:$\frac{12}{7}$.
点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.已知命题“?x∈R,x2-2ax+3≥0”是假命题,则实数a的取值范围为( )
| A. | $a=\sqrt{3}$ | B. | $a>\sqrt{3}$或$a<-\sqrt{3}$ | C. | $-\sqrt{3}<a<\sqrt{3}$ | D. | $-\sqrt{3}≤a≤\sqrt{3}$ |
12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的一条渐近线过点$(2,\sqrt{3})$,且双曲线的一个焦点在抛物线y2=2px(p>0)的准线上,则p等于( )
| A. | $\sqrt{7}$ | B. | $2\sqrt{7}$ | C. | 2 | D. | 1 |
19.
已知函数f(x)=Asin(wx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将函数的图象向左平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,则函数g(x)的解析式为( )
| A. | g(x)=2sin(2x-$\frac{π}{3}$) | B. | g(x)=2sin(2x+$\frac{π}{6}$) | C. | g(x)=-2sin(2x-$\frac{π}{3}$) | D. | g(x)=-2sin(2x+$\frac{π}{6}$) |
16.
执行如图所示的程序框图,若输出S的值为-1,则判断框内,对于下列四个关于n的条件的选项,不能填入的是( )
| A. | n>3? | B. | n>5? | C. | n>32? | D. | n>203? |