ÌâÄ¿ÄÚÈÝ
13£®ÎÒ¹ú¹Å´úÊýѧ¼ÒÁõ»ÕÊǹ«ÔªÈýÊÀ¼ÍÊÀ½çÉÏ×î½Ü³öµÄÊýѧ¼Ò£¬ËûÔÚ¡¶¾ÅÕÂËãÊõÔ²ÌïÊõ¡·×¢ÖØ£¬ÓøîÔ²ÊõÖ¤Ã÷ÁËÔ²Ãæ»ýµÄ¾«È·¹«Ê½£¬²¢¸ø³öÁ˼ÆËãÔ²ÖÜÂʵĿÆÑ§·½·¨£¬Ëùν¡°¸îÔ²Êõ¡±£¬¼´Í¨¹ýÔ²ÄÚ½ÓÕý¶à±ßÐÎϸ¸îÔ²£¬²¢Ê¹Õý¶à±ßÐεÄÖܳ¤ÎÞÏÞ½Ó½üÔ²µÄÖܳ¤£¬½ø¶øÇóµÃ½ÏΪ¾«È·µÄÔ²ÖÜÂÊ£¨Ô²ÖÜÂÊÖ¸Öܳ¤Óë¸ÃÔ²Ö±¾¶µÄ±ÈÂÊ£©£®Áõ»Õ¼ÆËãÔ²ÖÜÂÊÊÇ´ÓÕýÁù±ßÐοªÊ¼µÄ£¬Ò×ÖªÔ²µÄÄÚ½ÓÕýÁù±ßÐοɷÖΪÁù¸öÈ«µÈµÄÕýÈý½ÇÐΣ¬Ã¿¸öÈý½ÇÐεı߳¤¾ùΪԲµÄ°ë¾¶R£¬´ËʱԲÄÚ½ÓÕýÁù±ßÐεÄÖܳ¤Îª6R£¬´ËʱÈô½«Ô²ÄÚ½ÓÕýÁù±ßÐεÄÖܳ¤µÈͬÓÚÔ²µÄÖܳ¤£¬¿ÉµÃÔ²ÖÜÂÊΪ3£¬µ±Õý¶þÊ®ËıßÐÎÄÚ½ÓÓÚԲʱ£¬°´ÕÕÉÏÊöËã·¨£¬¿ÉµÃÔ²ÖÜÂÊΪ3.12£¨²Î¿¼Êý¾Ý£ºcos15¡ã¡Ö0.966£¬$\sqrt{0.068}$¡Ö0.26£©·ÖÎö Çó³ö±ß³¤Îª$\sqrt{{R}^{2}+{R}^{2}-2{R}^{2}cos15¡ã}$¡Ö0.26R£¬Öܳ¤Îª0.26¡Á24R=2¦ÐR£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÕý¶þÊ®ËıßÐεÄÔ²ÐĽÇΪ15¡ã£¬Ô²µÄ°ë¾¶R£¬±ß³¤Îª$\sqrt{{R}^{2}+{R}^{2}-2{R}^{2}cos15¡ã}$¡Ö0.26R£¬
Öܳ¤Îª0.26¡Á24R=2¦ÐR£¬¡à¦Ð=3.12£¬
¹Ê´ð°¸Îª3.12£®
µãÆÀ ±¾Ì⿼²éÄ£Äâ·½·¨¹À¼Æ¸ÅÂÊ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®Èô¼¯ºÏA={1£¬2}£¬Ôò¼¯ºÏAµÄËùÓÐ×Ó¼¯¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
4£®²»µÈʽ|x-3|-|x+1|¡Üa2-3a¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬1]¡È[4£¬+¡Þ£© | B£® | [-1£¬4] | C£® | [-4£¬1] | D£® | £¨-¡Þ£¬-4]¡È[1£¬+¡Þ£© |
8£®ÉèF1£¬F2·Ö±ðÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬PÊÇË«ÇúÏßÓÒÖ§ÉÏÒ»µã£¬Âú×ã$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0£¬ÇÒ3|$\overrightarrow{{PF}_{1}}$|=4|$\overrightarrow{{PF}_{2}}$|£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\sqrt{3}$ | C£® | $\sqrt{2}$ | D£® | 5 |
5£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1µÄʵÖ᳤Ϊ10£¬Ôò¸ÃË«ÇúÏߵĽ¥½üÏßµÄбÂÊΪ£¨¡¡¡¡£©
| A£® | $¡À\frac{5}{4}$ | B£® | $¡À\frac{4}{5}$ | C£® | $¡À\frac{5}{3}$ | D£® | $¡À\frac{3}{5}$ |
9£®ÒÑÖª$\overrightarrow a=£¨{4£¬2}£©$£¬ÔòÓë$\overrightarrow a$·½ÏòÏà·´µÄµ¥Î»ÏòÁ¿µÄ×ø±êΪ£¨¡¡¡¡£©
| A£® | £¨2£¬1£© | B£® | £¨-2£¬-1£© | C£® | $£¨{\frac{{2\sqrt{5}}}{5}£¬\frac{{\sqrt{5}}}{5}}£©$ | D£® | $£¨{-\frac{{2\sqrt{5}}}{5}£¬-\frac{{\sqrt{5}}}{5}}£©$ |