题目内容
2.已知数列{an}各项均为正数,其前n项和Sn满足$4{S_n}={a_n}^2+2{a_n}+1$(n∈N+).(1)求数列{an}的通项公式;
(2)若数列{bn}满足:${b_n}={a_n}•{2^{\frac{{{a_n}-1}}{2}}}$,求数列{bn}的前n项和Tn.
分析 (1)利用递推关系与等差数列的通项公式可得an;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)∵$4{S_n}={a_n}^2+2{a_n}+1$(n∈N+).
∴当n=1时,4a1=$({a}_{1}+1)^{2}$,解得a1=1.
当n≥2时,4an=4(Sn-Sn-1)=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,
化为(an+an-1)(an-an-1-2)=0,
∵数列{an}各项均为正数,∴an-an-1=2.
∴数列{an}是等差数列,首项为1,公差为2.
∴an=2n-1.
(2)${b_n}={a_n}•{2^{\frac{{{a_n}-1}}{2}}}$=(2n-1)•2n-1.
∴数列{bn}的前n项和Tn=1+3×2+5×22+…+(2n-1)•2n-1,
∴2Tn=2+3×22+…+(2n-3)•2n-1+(2n-1)•2n,
∴-Tn=1+2(2+22+…+2n-1)-(2n-1)•2n=$\frac{2×({2}^{n}-1)}{2-1}$-1-(2n-1)•2n=(3-2n)•2n-3,
∴Tn=(2n-3)•2n+3.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系的应用、“错位相减法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.红、蓝两色车、马、炮棋子各一枚,将这6枚棋子排成一列,记事件:每对同字的棋子中,均为红棋子在前,蓝棋子在后为事件A,则事件A发生的概率为( )
| A. | $\frac{1}{20}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
13.若x1,x2,x3,…,x2013的方差为3,则3x1,3x2,3x3,…,3x2013的方差为( )
| A. | 3 | B. | 9 | C. | 18 | D. | 27 |
17.已知函数f(x)=(x+2)n+(x-2)n,其中$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,则f(x)的展开式中x4的系数为( )
| A. | 120 | B. | -120 | C. | 60 | D. | 0 |
7.曲线$\left\{\begin{array}{l}{x=cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ为参数)上的点到直线y=2x-5的距离d的最大值为( )
| A. | $\frac{5\sqrt{5}}{5}$ | B. | $\frac{9\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | 0 |
11.已知x0是函数f(x)=ex-$\frac{1}{x-1}$的一个零点(其中e为自然对数的底数),若x1∈(1,x0),x2∈(x0,+∞),则( )
| A. | f(x1)<0,f(x2)<0 | B. | f(x1)<0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)>0,f(x2)>0 |
12.
如图,三棱台ABC-A1B1C1中,A1B1:AB=1:2,则三棱锥B-A1B1C1与三棱锥A1-ABC的体积之比为( )
| A. | 1:2 | B. | 1:3 | C. | 1:$\sqrt{2}$ | D. | 1:4 |