ÌâÄ¿ÄÚÈÝ
9£®£¨I£©ÇóÍÖÔ²ºÍÅ×ÎïÏߵıê×¼·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬Èô²»´æÔÚ£®Çë˵Ã÷ÀíÓÉ£»Èô´æÔÚ£¬ÇëÇó³öÖ±Ïß·½³Ì£®
·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßµÄͨ¾¶Îª8£¬ÓÉ´ËÇóµÃpÖµ£¬ÔòÅ×ÎïÏß·½³Ì¿ÉÇó£»ÔÙÓÉÍÖÔ²ÀëÐÄÂÊ»¯ÍÖÔ²·½³ÌΪx2+2y2-2b2=0£®°ÑAµÄ×ø±ê´úÈëÍÖÔ²·½³ÌÇóµÃbÖµ£¬½øÒ»²½µÃµ½aÖµ£¬ÔòÍÖÔ²±ê×¼·½³Ì¿ÉÇó£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄÖ±Ïßl£¬Éè³öÖ±Ïß·½³Ìy=kx+2k£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬ÓÉÅбðʽµÈÓÚ0ÇóµÃkÖµ£¬µÃµ½Ö±Ïß·½³Ì£¬ÔÙÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃÏÒ³¤Îª$\frac{20\sqrt{2}}{3}$£¬ËµÃ÷´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬ABΪÅ×ÎïÏßy2=2px£¨p£¾0£©µÄͨ¾¶£®
¼´2p=8£¬¡àp=4£®
ÔòÅ×ÎïÏß·½³ÌΪy2=8x£»
¡àF1£¨2£¬0£©£¬ÔòA£¨2£¬4£©£®
ÓÉÍÖÔ²µÄÀëÐÄÂÊ$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬µÃ$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¼´$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¡àa2=2b2£®
ÔòÍÖÔ²·½³ÌΪx2+2y2-2b2=0£®
¡ßAÔÚÍÖÔ²ÉÏ£¬¡à22+2¡Á42-2b2=0£¬½âµÃb2=18£¬
¡àa2=2b2=36£®
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{18}=1$£»
£¨¢ò£©ÓÉÌâÒ⣬¼ÙÉè´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬
ÉèÖ±Ïß·½³ÌΪy=kx+2k£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2k}\\{{y}^{2}=8x}\end{array}\right.$£¬ÏûÈ¥yµÃ£ºk2x2+£¨4k2-8£©x+4k2=0£®
ÓÉ¡÷=£¨4k2-8£©2-16k4=0£¬½âµÃ£ºk=¡À1£®
µ±k=1ʱ£¬ÔòÖ±Ïß·½³ÌΪy=x+2£®
ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{36}+\frac{{y}^{2}}{18}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£º3x2+8x-28=0£®
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=-\frac{8}{3}£¬{x}_{1}{x}_{2}=-\frac{28}{3}$£®
¡à|CD|=$\sqrt{2}\sqrt{£¨-\frac{8}{3}£©^{2}+4¡Á\frac{28}{3}}$=$\frac{20\sqrt{2}}{3}$£®
ͬÀí¿ÉµÃ£¬y=-x+2Âú×ãÌâÒ⣮
¹Ê´æÔÚ¹ý£¨-2£¬0£©ÓëÅ×ÎïÏßÏàÇÐÇÒ±»ÍÖÔ²½ØµÃµÄÏÒCDµÄ³¤Ç¡Îª$\frac{20\sqrt{2}}{3}$µÄÖ±Ïߣ¬Ö±Ïß·½³ÌΪy=¡Àx+2£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¹Ø¼üÊÇÇå³þÔ²×¶ÇúÏߵĶԳÆÐÔ£¬¿¼²éÁËÅ×ÎïÏßͨ¾¶µÄÓ¦Óã¬ÑµÁ·ÁËÀûÓÃÏÒ³¤¹«Ê½ÇóÏÒ³¤£¬ÊÇÖеµÌ⣮