题目内容
5.已知x=$\frac{1}{8}$,求值:$\frac{x+1}{{x}^{\frac{2}{3}}+1}$$+\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{2}{3}}}{{x}^{\frac{1}{3}}-1}$.分析 根据指数幂的运算性质计算即可.
解答 解:原式=$\frac{\frac{1}{8}+1}{\frac{1}{4}+1}$+$\frac{\frac{1}{8}-1}{\frac{1}{4}+\frac{1}{2}+1}$-$\frac{\frac{1}{8}-\frac{1}{4}}{\frac{1}{2}-1}$=$\frac{9}{10}$-$\frac{1}{2}$+$\frac{1}{4}$=$\frac{13}{20}$
点评 本题考查了指数幂的运算性质,属于基础题.
练习册系列答案
相关题目
10.命题p:?x∈R,x≥0的否定是( )
| A. | ¬p:?x∈R,x<0 | B. | ¬p:?x∈R,x≤0 | C. | ¬p:?x∈R,x<0 | D. | ¬p:?x∈R,x≤0 |
7.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$,则$\frac{y+2}{x+1}$的最大值为( )
| A. | 3 | B. | $\frac{1}{3}$ | C. | 2 | D. | $\frac{5}{2}$ |
17.命题p:抛物线x2=4y的焦点坐标为(0,1),q:“a=3”是“直线ax+2y=0与直线2x-3y=3垂直”的充要条件,则以下结论正确的是( )
| A. | p或q为真命题 | B. | p且q为假命题 | C. | p且¬q为真命题 | D. | ¬p或q为假命题 |