题目内容
15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三内角的值.分析 把已知的两等式变形后,根据两角和的正切函数公式及诱导公式化简,分别根据A和C的范围,利用特殊角的三角函数值即可求出A和C的度数.
解答 解:∵tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且A+B+C=180°,
∴$\frac{tanB+tanC}{1-tanBtanC}$=$\sqrt{3}$,即tan(B+C)=-tanA=$\sqrt{3}$,
∴tanA=-$\sqrt{3}$,
∵0<A<π,∴∠A=120°,
∵$\sqrt{3}$(tanA+tanB)=tanAtanB-1,
∴$\frac{tanB+tanA}{1-tanBtanA}$=-$\frac{\sqrt{3}}{3}$
即tan(B+A)=-tanC=-$\frac{\sqrt{3}}{3}$,
∴tanC=$\frac{\sqrt{3}}{3}$,
∵0<C<π,∴∠C=30°,
∴∠B=180°-120°-30°=30°,
即∠B=∠C=30°,∠A=120°.
点评 此题考查了三角形的解法,要到的知识有两角和与差的正切函数公式、诱导公式、特殊角的三角函数值,以及等腰三角形的判别方法,其中灵活运用公式把已知的两等式进行三角函数的恒等变形,得到A和C的度数,进而得到B的度数是解本题的关键.
练习册系列答案
相关题目
10.已知log${\;}_{\frac{2}{3}}$a>1,($\frac{2}{3}$)b>1,2c=3,则( )
| A. | a>b>c | B. | c>b>a | C. | a>c>b | D. | c>a>b |
20.已知正项数列{an}的前n项和为Sn,若4S2n-2=a2n+$\frac{1}{{{a}^{2}}_{n}}$(n∈N*),则S2014=( )
| A. | 2015+$\frac{\sqrt{2015}}{2015}$ | B. | 2015-$\frac{\sqrt{2015}}{2015}$ | C. | 2015 | D. | $\sqrt{2014}$ |
4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示双曲线,则实数k的取值范围为( )
| A. | (-∞,0)∪(0,1)∪(1,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,0) |
5.当x→0+时,无穷小量f(x)=${∫}_{0}^{{X}^{2}}$sintdt是无穷小量x3的( )
| A. | 高阶无穷小量 | B. | 低阶无穷小量 | ||
| C. | 同阶但非等价无穷小量 | D. | 等价无穷小量 |