ÌâÄ¿ÄÚÈÝ
13£®£¨¢ñ£©ÇóÖ¤£ºAE¡ÍEB£»
£¨¢ò£©Éè$\frac{AF}{BG}$=¦Ë£¬ÊÇ·ñ´æÔڦˣ¬Ê¹¶þÃæ½ÇB-AC-EµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{3}$£¿Èô´æÔÚ£¬Çó¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃDA¡ÍÃæABE£¬½øÒ»²½µÃµ½Æ½ÃæABCD¡ÍÆ½ÃæABE£¬ÔÙÓÉCB¡ÍAB£¬µãBÔÚÃæAECµÄÉäÓ°ÔÚÏß¶ÎECÉÏ£¬¿ÉµÃAE¡ÍÃæBCE£¬ÓÖBE?ÃæBCE£¬µÃµ½AE¡ÍEB£»
£¨¢ò£©ÒÔAΪԵ㣬´¹Ö±ÓÚÆ½ÃæABCDµÄÖ±ÏßΪxÖᣬABËùÔÚÖ±ÏßΪyÖᣬADΪzÖᣬÈçͼËùʾ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬ÓÉÒÑÖª$\frac{AF}{BG}$=¦Ë=$\frac{AE}{BE}$£¬¼ÙÉè´æÔڦˣ¬Ê¹¶þÃæ½ÇB-AC-EµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{3}$£®·Ö±ðÇó³öÆ½ÃæAECÓëÆ½ÃæBACµÄÒ»¸ö·¨ÏòÁ¿ÓÉ|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=$\frac{\sqrt{3}}{3}$µÃa2=b2£¬ÔÙÓÉ$\overrightarrow{AE}•\overrightarrow{BE}=0$£¬µÃa2+b£¨b-2£©=0£¬ÁªÁ¢ÇóµÃbÖµ£¬¿ÉµÃAE=BE£®¼´µ±¦Ë=1ʱ£¬¶þÃæ½ÇB-AC-EµÄÓàÏÒֵΪ$\frac{{\sqrt{3}}}{3}$£®
½â´ð £¨¢ñ£©Ö¤Ã÷£ºÓÉÒÑÖª£¬ËıßÐÎABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬![]()
¡ßDA¡ÍAF£¬DA¡ÍAE£¬AE¡ÉAF=A£¬
¡àDA¡ÍÃæABE£¬ÔòÆ½ÃæABCD¡ÍÆ½ÃæABE£¬
ÓÖCB¡ÍAB£¬¡àCB¡ÍAE£®
ÓÖµãBÔÚÃæAECµÄÉäÓ°ÔÚÏß¶ÎECÉÏ£¬ÉèΪH£¬ÔòAE¡ÍBH£¬
¡àAE¡ÍÃæBCE£¬ÓÖBE?ÃæBCE£¬
¡àAE¡ÍEB£»
£¨¢ò£©½â£ºÒÔAΪԵ㣬´¹Ö±ÓÚÆ½ÃæABCDµÄÖ±ÏßΪxÖᣬABËùÔÚÖ±ÏßΪyÖᣬADΪzÖᣬ
ÈçͼËùʾ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÓÉÒÑÖª$\frac{AF}{BG}$=¦Ë=$\frac{AE}{BE}$£¬¼ÙÉè´æÔڦˣ¬Ê¹¶þÃæ½ÇB-AC-EµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{3}$£®
ÉèE£¨a£¬b£¬0£©£¬Ôò$\overrightarrow{AE}=£¨a£¬b£¬0£©$£¬$\overrightarrow{AC}=£¨0£¬2£¬2£©$£®
ÉèÆ½ÃæAECµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{n}=£¨x£¬y£¬z£©$£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=ax+by=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2y+2z=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{b}{a}y}\\{z=-y}\end{array}\right.$£¬
Áîy=a£¬µÃ$\overrightarrow{n}=£¨-b£¬a£¬-a£©$ÊÇÆ½ÃæEACµÄÒ»¸ö·¨ÏòÁ¿£®
ÓÖÆ½ÃæBACµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}=£¨1£¬0£¬0£©$£¬
ÓÉ|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=$\frac{|b|}{\sqrt{2{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{3}}{3}$£¬»¯¼òµÃa2=b2 ¢Ù£¬
ÓÖ¡ßAE¡ÍÆ½ÃæBCE£¬¡àAE¡ÍBE£¬
¡à$\overrightarrow{AE}•\overrightarrow{BE}=0$£¬¼´a2+b£¨b-2£©=0 ¢Ú£¬
ÁªÁ¢¢Ù¢Ú£¬½âµÃb=0£¨Éᣩ£¬b=1£®
ÓÉ$AE=\sqrt{{a}^{2}+{b}^{2}}$£¬BE=$\sqrt{{a}^{2}+£¨b-2£©^{2}}$£¬¡àAE=BE£®
¡àµ±¦Ë=1ʱ£¬¶þÃæ½ÇB-AC-EµÄÓàÏÒֵΪ$\frac{{\sqrt{3}}}{3}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÆ½Ãæ´¹Ö±µÄÅж¨ÓëÐÔÖÊ£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦Óë˼άÄÜÁ¦£¬ÑµÁ·ÁËÀûÓÿռäÖ±½Ç×ø±êϵÇó½â¶þÃæ½ÇµÄÆ½Ãæ½Ç£¬ÊÇÖеµÌ⣮
| A£® | $\frac{1}{2}$£¬$\frac{¦Ð}{6}$ | B£® | 1£¬$\frac{¦Ð}{6}$ | C£® | 1£¬$\frac{¦Ð}{3}$ | D£® | $\frac{1}{2}$£¬$\frac{¦Ð}{3}$ |
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | $\frac{3}{2}$ | D£® | 2 |