题目内容
已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.
由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)
故x2+y2+z2≥
,当且仅当
=
=
取等号,
此时y=2x,z=3x,x+2y+3z=14x=1,
∴x=
,y=
,x=
,
x+y+z=
=
.
故答案为:
.
故x2+y2+z2≥
| 1 |
| 14 |
| x |
| 1 |
| y |
| 2 |
| z |
| 3 |
此时y=2x,z=3x,x+2y+3z=14x=1,
∴x=
| 1 |
| 14 |
| 2 |
| 14 |
| 3 |
| 14 |
x+y+z=
| 6 |
| 14 |
| 3 |
| 7 |
故答案为:
| 3 |
| 7 |
练习册系列答案
相关题目