题目内容

函数f(x)=log2(x2-4x)的定义域为(  )
A、(0,4)
B、[0,4]
C、(-∞,0)∪(4,+∞)
D、(-∞,0)∪4,+∞)
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件即可求函数的定义域.
解答: 解:要使函数有意义,则x2-4x>0,解得x>4或x<0,
故函数的定义域为(-∞,0)∪(4,+∞),
故选:C
点评:本题主要考查函数的定义域求解,要求熟练掌握常见函数成立的条件,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网