题目内容
4.雅礼中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k=20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( )| A. | 177 | B. | 157 | C. | 417 | D. | 367 |
分析 根据系统抽样的定义进行计算即可得到结论.
解答 解:根据系统抽样的定义可知抽取的号码构成以17为首项,公差d=20的等差数列{an},
∴an=17+20(n-1)=20n-3,
n=8,a8=157,
故选:B.
点评 本题主要考查系统抽样的应用,根据系统抽样转化为等差数列是解决本题的关键,比较基础.
练习册系列答案
相关题目
10.函数f(x)=$\sqrt{4{x}^{2}+4x+2}$+$\sqrt{4{x}^{2}-12x+13}$的值域是( )
| A. | [3,+∞) | B. | [5,+∞) | C. | [$\sqrt{2}$+$\sqrt{13}$,+∞) | D. | [6,+∞) |
11.计算:(-a3)2=( )
| A. | -a6 | B. | a6 | C. | a5 | D. | a9 |
19.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$则f(f($\frac{1}{3}$))=( )
| A. | -2 | B. | $-\frac{1}{2}$ | C. | 0 | D. | $\frac{1}{2}$ |
16.
某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:
(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
| 分 组 | 频 数 | 频 率 |
| [0,10) | 0.05 | |
| [10,20) | 0.10 | |
| [20,30) | 30 | |
| [30,40) | 0.25 | |
| [40,50) | 0.15 | |
| [50,60] | 15 | |
| 合 计 | n | 1 |
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.