题目内容

7.若不等式ax2+bx+c>0的解集为{x|2<x<3},则不等式cx2-bx+a>0的解集为{x|$-\frac{1}{2}$<x<-$\frac{1}{3}$}.

分析 由于不等式ax2+bx+c>0的解集为(2,3),可得:2,3是一元二次方程ax2+bx+c=0的两个实数根,利用根与系数的关系可把不等式cx2-bx+a>0化为二次不等式即可解出.

解答 解:∵不等式ax2+bx+c>0的解集为(2,3),
∴2,3是一元二次方程ax2+bx+c=0的两个实数根.并且a<0,
∴2+3=-$\frac{b}{a}$,2×3=$\frac{c}{a}$.
∴不等式cx2-bx+a>0化为$\frac{c}{a}$x2-$\frac{b}{a}$x+1<0,
∴6x2+5x+1<0,
化为(2x+1)(3x+1)<0,
∴$-\frac{1}{2}$<x<-$\frac{1}{3}$.
∴不等式cx2-bx+a>0的解集为{x|$-\frac{1}{2}$<x<-$\frac{1}{3}$},
故答案为:{x|$-\frac{1}{2}$<x<-$\frac{1}{3}$}

点评 本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网