题目内容
已知,求矩阵.
设 则,
故
已知()的外接圆为圆,过的切线交于点,过作直线交于点,且
(1)求证:平分角;
(2)若,求的值.
已知函数,,其中函数的图象在点处的切线平行于轴.
(1)确定与的关系;
(2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点,求证:.
已知,则 .
某商场为促销要准备一些正三棱锥形状的装饰品,用半径为的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为,体积为.
(1)求关于的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,的最大值是多少?并求此时的
值.
已知集合,,则= .
在等差数列和等比数列中,已知,那么满足的
的所有取值构成的集合是 .
甲、乙、丙三位同学商量高考后外出旅游,甲提议去古都西安,乙提议去海上花园厦门,丙表示随意.最终,三人商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上,则甲得一分、乙得零分;若反面朝上,则乙得一分、甲得零分,先得4分者获胜.三人均执行胜者的提议.若记所需抛掷硬币的次数为X.
(1)求的概率;
(2)求X的分布列和数学期望.
若实数x, y满足x-4=2,则x的取值范围是 .