题目内容
已知tan(α+β)=
,tan(β-
)=
,则sin(α+
)sin(
-α)的值为 .
| 2 |
| 5 |
| π |
| 4 |
| 1 |
| 4 |
| π |
| 4 |
| π |
| 4 |
考点:两角和与差的正弦函数
专题:三角函数的图像与性质
分析:首先,根据已知条件,得到tan(α+
)=tan[(α+β)-(β-
)]=
,然后,求解得到tanα=-
,然后,再结合sin(α+
)sin(
-α)=
sin[2(α+
)]=
cos2α=
×
=
×
=
.从而得到结果.
| π |
| 4 |
| π |
| 4 |
| 3 |
| 22 |
| 19 |
| 25 |
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1-tan2α |
| 1+tan2α |
| 1 |
| 2 |
1-(-
| ||
1+(-
|
| 66 |
| 493 |
解答:
解:∵tan(α+β)=
,tan(β-
)=
,
∴tan(α+
)=tan[(α+β)-(β-
)]
=
=
=
,
∴
=
,
∴tanα=-
,
∵sin(α+
)sin(
-α)
=
sin[2(α+
)]
=
cos2α
=
×
=
×
=
.
故答案为:
.
| 2 |
| 5 |
| π |
| 4 |
| 1 |
| 4 |
∴tan(α+
| π |
| 4 |
| π |
| 4 |
=
tan(α+β)-tan(β-
| ||
1+tan(α+β)tan(β-
|
=
| ||||
1+
|
=
| 3 |
| 22 |
∴
| 1+tanα |
| 1-tanα |
| 3 |
| 22 |
∴tanα=-
| 19 |
| 25 |
∵sin(α+
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| π |
| 4 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1-tan2α |
| 1+tan2α |
=
| 1 |
| 2 |
1-(-
| ||
1+(-
|
=
| 66 |
| 493 |
故答案为:
| 66 |
| 493 |
点评:本题重点考查了二倍角公式、两角和与差的公式等知识,属于中档题.
练习册系列答案
相关题目
| π |
| 6 |
| 5π |
| 6 |
| π |
| 2 |
A、向左平移
| ||||
B、向左平移
| ||||
C、向左平移
| ||||
D、向左平移
|