题目内容
已知
<β<α<
,且cos(α-β)=
sin(α+β)=-
,求:cos2α的值.
| π |
| 2 |
| 3π |
| 4 |
| 12 |
| 13 |
| 3 |
| 5 |
∵
<β<α<
,∴0<α-β<
,π<α+β<
,
∵cos(α-β)=
,sin(α+β)=-
,
∴sin(α-β)=
=
,cos(α+β)=-
=-
,
则cos2α=cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)=
×(-
)-(-
)×
=-
.
| π |
| 2 |
| 3π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
∵cos(α-β)=
| 12 |
| 13 |
| 3 |
| 5 |
∴sin(α-β)=
1-(
|
| 5 |
| 13 |
1-(-
|
| 4 |
| 5 |
则cos2α=cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)=
| 12 |
| 13 |
| 4 |
| 5 |
| 3 |
| 5 |
| 5 |
| 13 |
| 33 |
| 65 |
练习册系列答案
相关题目