题目内容
已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=
(an+t).
(1)若数列{bn}为等差数列,求bn;
(2)在(1)的条件下,求数列{an}的前n项和Sn.
| 1 |
| 2n |
(1)若数列{bn}为等差数列,求bn;
(2)在(1)的条件下,求数列{an}的前n项和Sn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)令n=3、2依次代入an=2an-1+2n+1,求出a2、a1,再由bn=
(an+t)求出b1、b2、b3,根据等差中项求出t的值,再求出公差和等差数列{bn}的通项公式;
(2)由(1)和bn=
(an+t)求出an,利用分组求和和错位相减法求出数列{an}的前n项和Sn.
| 1 |
| 2n |
(2)由(1)和bn=
| 1 |
| 2n |
解答:
解:(1)由an=2an-1+2n+1,a3=27得,27=2a2+23+1,解得a2=9,
同理得,9=2a1+22+1,解得a1=2,
∵bn=
(an+t),∴b1=
(a1+t)=
(2+t),
b2=
(a2+t)=
(9+t),b3=
(a3+t)=
(27+t),
∵数列{bn}为等差数列,∴2b2=b1+b3.
即
(9+t)=
(2+t)+
(27+t),解得t=1,
则b1=
,b2=
,即公差是1,
∴bn=
+n-1=n+
;
(2)由(1)得,bn=n+
=
(an+1),
解得an=(n+
)•2n-1=(2n+1)•2n-1-1,
∴Sn=(3•20-1)+(5•2-1)+(7•22-1)+…[+(2n+1)•2n-1-1]
则Sn=3+5•2+7•22+…+(2n+1)•2n-1-n ①,
2Sn=3•2+5•22+7•23+…+(2n+1)•2n-2n ②,
①-②得,-Sn=3+2(2+22+23+…+2n-1)-(2n+1)2n+n
=3+2×
-(2n+1)2n+n
=(1-2n)•2n+n-1,
则Sn=(2n-1)•2n-n+1.
同理得,9=2a1+22+1,解得a1=2,
∵bn=
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
b2=
| 1 |
| 22 |
| 1 |
| 4 |
| 1 |
| 23 |
| 1 |
| 8 |
∵数列{bn}为等差数列,∴2b2=b1+b3.
即
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
则b1=
| 3 |
| 2 |
| 5 |
| 2 |
∴bn=
| 3 |
| 2 |
| 1 |
| 2 |
(2)由(1)得,bn=n+
| 1 |
| 2 |
| 1 |
| 2n |
解得an=(n+
| 1 |
| 2 |
∴Sn=(3•20-1)+(5•2-1)+(7•22-1)+…[+(2n+1)•2n-1-1]
则Sn=3+5•2+7•22+…+(2n+1)•2n-1-n ①,
2Sn=3•2+5•22+7•23+…+(2n+1)•2n-2n ②,
①-②得,-Sn=3+2(2+22+23+…+2n-1)-(2n+1)2n+n
=3+2×
| 1-2n-1 |
| 1-2 |
=(1-2n)•2n+n-1,
则Sn=(2n-1)•2n-n+1.
点评:本题考查了递推公式的意义,等差数列的通项公式、等比数列的前n项和公式、分组求和法、错位相减法等,考查分析问题和解决问题的能力.
练习册系列答案
相关题目