题目内容

12.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=$∠IOA=\frac{π}{3}$,设$\overrightarrow{OD}=\vec a,\overrightarrow{OH}=\vec b$,已知点P在各菱形边上运动,且$\overrightarrow{OP}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x,y∈R,则x+y的最大值为4.

分析 以O为坐标原点,GC所在的直线为x轴,建立平面直角坐标系,设菱形的边长为2,从而求出D,H点的坐标,这样便可得到向量$\overrightarrow{a}$、$\overrightarrow{b}$的坐标.
再设P(X,Y),根据条件即可得出x+y的解析式,设x+y=z,X,Y的活动域是菱形的边上,根据线性规划的知识求出z的最大值,即求出x+y的最大值.

解答 解:如图所示
以GC所在直线为x轴,过O且垂直于GC的直线为y轴,建立如图所示坐标系,设菱形的边长为2,
则:D(1,$\sqrt{3}$),H(-3,-$\sqrt{3}$);
设P(X,Y),则(X,Y)=x(1,$\sqrt{3}$)+y(-3,-$\sqrt{3}$);
∴$\left\{\begin{array}{l}{X=x-3y}\\{Y=\sqrt{3}x-\sqrt{3}y}\end{array}\right.$;
∴x+y=$\frac{2\sqrt{3}}{3}$Y-X;
设z=$\frac{2\sqrt{3}}{3}$Y-X;
∴Y=$\frac{\sqrt{3}}{2}$X+$\frac{\sqrt{3}}{2}$z,$\frac{\sqrt{3}}{2}$z表示在y轴上的截距;
∴当截距最大时,z取到最大值;
根据图形可看出,当直线经过点E(0,2$\sqrt{3}$)时,截距最大;
∴2$\sqrt{3}$=0+$\frac{\sqrt{3}}{2}$z;
解得z=4;
∴x+y的最大值为4.
故答案为:4.

点评 本题考查了建立平面直角坐标系,利用向量坐标解决向量问题的方法,解题时应引入变量X,Y来表示x+y,从而求x+y的最值方法,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网