题目内容
12.集合P={x|y=$\sqrt{x+1}$},Q={y|y=$\sqrt{x+1}$},则P,Q的关系是( )| A. | P=Q | B. | P?Q | C. | Q?P | D. | P∩Q=∅ |
分析 通过求集合P中函数的定义域化简集合p,通过求集合Q中函数的值域化简集合Q,利用集合间元素的关系判断出集合的关系.
解答 解:依题意得,P={x|x+1≥0}={x|x≥-1},Q={y|y≥0},
∴P?Q,
故选:C.
点评 进行集合间的元素或判断集合间的关系时,应该先化简各个集合,再借助数轴或韦恩图进行运算或判断.
练习册系列答案
相关题目
3.平行四边形ABCD中,AC与BD交于点O,M为OC的中点,若$\overrightarrow{AB}$=(2,4),$\overrightarrow{AC}$=(1,3),则$\overrightarrow{AD}•\overrightarrow{BM}$等于( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 3 | D. | -3 |
20.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)为了研究喜欢打蓝球是否与性别有关,根据独立性检验,你有多大的把握认为是否喜欢打蓝球与性别有关?
(2)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(3)在上述(2)中抽取的6人中选2人,求恰有一名女生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 20 | 5 | 25 |
| 女生 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(2)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(3)在上述(2)中抽取的6人中选2人,求恰有一名女生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.若a∈R,则“a2>a”是“a>1”的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
17.等差数列{an}的前n项和为Sn,已知a1=-100,且5S7-7S5=70,则S101等于( )
| A. | 100 | B. | 50 | C. | 0 | D. | -50 |