题目内容


已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)-log3x]=4,则函数g(x)=f(x-1)-f′(x-1)-3的零点所在区间是(  )

A.(1,2)                                B.(2,3) 

C.                               D.


B

[解析] 由题意,得f(x)-log3xc(c为常数),则f(x)=log3xc,故f[f(x)-log3x]=f(c)=log3cc=4.∴c=3,∴f(x)=log3x+3,则函数g(x)=f(x-1)-f′(x-1)-3=log3(x-1)-log3e在(1,+∞)上为增函数,又g(2)=-log3e<0,g(3)=log32-log3e>0,故函数g(x)=f(x-1)-f′(x-1)-3的零点所在的区间是(2,3),故选B.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网