题目内容

20.证明:1+$\frac{1}{2\sqrt{2}}$+$\frac{1}{3\sqrt{3}}$+…+$\frac{1}{n\sqrt{n}}$<3(n∈N*

分析 证明$\frac{1}{\sqrt{{k}^{3}}}$=$\frac{1}{\sqrt{{k}^{2}•k}}$<$\frac{1}{\sqrt{({k}^{2}-\frac{1}{4})•k}}$=$\frac{\sqrt{2k-1}+\sqrt{2k+1}}{\sqrt{k}}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$)<2$\sqrt{2}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$),再叠加,即可证明结论.

解答 证明:∵$(\sqrt{2k-1}+\sqrt{2k+1})^{2}$=4k+2$\sqrt{4{k}^{2}-1}$<4k+4k=8k.
∴$\frac{\sqrt{2k-1}+\sqrt{2k+1}}{\sqrt{k}}$<2$\sqrt{2}$,
∴$\frac{1}{\sqrt{{k}^{3}}}$=$\frac{1}{\sqrt{{k}^{2}•k}}$<$\frac{1}{\sqrt{({k}^{2}-\frac{1}{4})•k}}$=$\frac{\sqrt{2k-1}+\sqrt{2k+1}}{\sqrt{k}}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$)<2$\sqrt{2}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$).
∴1+$\frac{1}{2\sqrt{2}}$+$\frac{1}{3\sqrt{3}}$+…+$\frac{1}{n\sqrt{n}}$<2$\sqrt{2}$•[(1-$\frac{1}{\sqrt{3}}$)+…+($\frac{1}{\sqrt{2n-1}}$-$\frac{1}{\sqrt{2n+1}}$)]=2$\sqrt{2}$•(1-$\frac{1}{\sqrt{2n+1}}$)$<2\sqrt{2}$<3,
∴1+$\frac{1}{2\sqrt{2}}$+$\frac{1}{3\sqrt{3}}$+…+$\frac{1}{n\sqrt{n}}$<3(n∈N*

点评 本题考查不等式的证明,考查放缩法的运用,正确放缩是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网