题目内容
19.已知tanα=2,$\frac{sinα-4cosα}{5sinα+2cosα}$=( )| A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{7}{9}$ | D. | $-\frac{7}{9}$ |
分析 利用同角三角函数的基本关系,求得所给式子的值.
解答 解:∵tanα=2,$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=$\frac{2-4}{10+2}$=-$\frac{1}{6}$,
故选:A.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
14.一种灯泡使用一年的概率为0.8,使用两年的概率为0.4,现有已经使用一年的灯泡,它还能使用一年的概率是( )
| A. | 0.4 | B. | 0.5 | C. | 0.6 | D. | 0.8 |
11.若x,y满足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值为2,则实数m的值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
8.直线$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则线段AB的中点坐标为( )
| A. | (3,-3) | B. | $(-\sqrt{3},3)$ | C. | $(\sqrt{3},-3)$ | D. | $(3,-\sqrt{3})$ |
9.若圆的参数方程为x=-1+2cost,y=3+2sint(t为参数),直线的参数方程为x=2m-1,y=6m-1(m为参数),则直线与圆的位置关系是( )
| A. | 过圆心 | B. | 相交而不过圆心 | C. | 相切 | D. | 相离 |