题目内容
1.闭区间[0,5]上等可能的任取一个实数x,那么不等式x2-x-2≤0 成立的概率为$\frac{2}{5}$.分析 先利用不等式求出满足不等式成立的x的取值范围,然后利用几何概型的概率公式求解.
解答 解:由题意闭区间[0,5]知0≤x≤5.
由x2-x-2≤0,解得-1≤x≤2,
所以由几何概型的概率公式可得使不等式x2-x-2≤0 成立的概率
为$\frac{2-0}{5-0}$=$\frac{2}{5}$,.
故答案为:$\frac{2}{5}$.
点评 本题主要考查几何概型,要求熟练掌握几何概型的概率求法.
练习册系列答案
相关题目
12.已知△ABC的三个内角为A,B,C,其所对的边长分别为a,b,c,若满足向量$\overrightarrow m$=(b-a,c-a),$\overrightarrow n$=(a+c,b)共线,则$\sqrt{3}$tanAtanB-tanA-tanB等于( )
| A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
9.已知1<a<$\frac{3}{2}$,则$\frac{2}{a-1}$+$\frac{1}{3-2a}$的最小值为( )
| A. | $\frac{9}{2}$ | B. | 7 | C. | 9 | D. | 8 |
16.若$\overrightarrow{a}$=(λ,2),$\overrightarrow{b}$=(-3,5),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,则λ的取值范围是( )
| A. | ($\frac{10}{3}$,+∞) | B. | [$\frac{10}{3}$,+∞) | C. | (-∞,$\frac{10}{3}$) | D. | (-∞,$\frac{10}{3}$] |
13.棱柱的侧面一定是( )
| A. | 平行四边形 | B. | 矩形 | C. | 正方形 | D. | 菱形 |
10.已知△ABC中,AB=3,BC=5,且cosB为方5x2-7x-6=0的根.则AB•cosA+BC•cosC的值为( )
| A. | 2$\sqrt{13}$ | B. | 2$\sqrt{13}$或-26 | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |