题目内容
已知函数f(x)=log4(ax2+2x+3).
(1)若f(1)=1,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
解:(1)∵f(1)=1,
∴log4(a+5)=1,因此a+5=4,a=-1,
这时f(x)=log4(-x2+2x+3).
由-x2+2x+3>0得-1<x<3,函数定义域为(-1,3).
令g(x)=-x2+2x+3.
则g(x)在(-∞,1)上递增,在(1,+∞)上递减,
又y=log4x在(0,+∞)上递增,
所以f(x)的单调递增区间是(-1,1),递减区间是(1,3).
(2)假设存在实数a使f(x)的最小值为0,则h(x)=ax2+2x+3应有最小值1,因此应有![]()
解得a=
.
故存在实数a=
使f(x)的最小值等于0
练习册系列答案
相关题目