题目内容

20.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个单位向量,且向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,且$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=0,求实数x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=x=1,求向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$的夹角θ的余弦值.

分析 (1)根据$\overrightarrow{a}⊥\overrightarrow{b}$便有$\overrightarrow{a}•\overrightarrow{b}=0$,从而得到$(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})•(x\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})=0$,进行数量积的运算便可得到关于x的方程,从而求出实数x的值;
(2)可知$\overrightarrow{b}=\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}}$,从而有$(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})•(\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})=1$进行数量积的运算便可得到3+6+11cosθ=1,这便可得出cosθ的值.

解答 解:(1)∵$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=0$,又$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$为单位向量,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$;
∴$(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})•(x\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})$=$3x{\overrightarrow{{e}_{1}}}^{2}+(9+2x)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+6{\overrightarrow{{e}_{2}}}^{2}$=3x+6=0;
∴x=-2;
(2)$\overrightarrow{a}•\overrightarrow{b}=x=1$;
∴$(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})•(\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})$=3+6+11cosθ=1;
∴$cosθ=-\frac{8}{11}$;
即向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$的夹角θ的余弦值为$-\frac{8}{11}$.

点评 考查单位向量的概念,向量垂直的充要条件,以及数量积的运算及其计算公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网