题目内容
18.在平面四边形ABCD中,AB=3,AC=12,cos∠BAC=$\frac{29}{36}$,$\overrightarrow{AD}$•$\overrightarrow{CD}$=0,则BD的最大值为10.分析 利用数量积为0,转化为D的轨迹是以AC为直径的圆,BD的最大值为AC的中点与B的距离加上半径.
解答 解:由题意在平面四边形ABCD中,AB=3,AC=12,cos∠BAC=$\frac{29}{36}$,$\overrightarrow{AD}$•$\overrightarrow{CD}$=0,
可知D的轨迹是以AC为直径的圆,BD的最大值为AC的中点E与B的距离加上半径.
BE=$\sqrt{A{B}^{2}+({AE)}^{2}-2AE•ABcoc∠BAC}$=$\sqrt{9+36-2×3×6×\frac{29}{36}}$=4.
则BD的最大值为:6+4=10.
故答案为:10;
点评 本题考查三角形的解法,轨迹方程的应用,余弦定理以及数量积的应用,考查转化思想以及计算能力,是好题.
练习册系列答案
相关题目
6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则( )
| A. | $\overrightarrow{BO}=-\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$ | B. | $\overrightarrow{BO}=\frac{1}{6}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$ | C. | $\overrightarrow{BO}=\frac{5}{6}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}$ | D. | $\overrightarrow{BO}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$ |
8.
某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
(1)写出其中a,b,n及x和y的值;
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在[35,45)的概率.
| 组号 | 分组 | 喜爱人数 | 喜爱人数 占本组的频率 |
| 第1组 | [15,25) | a | 0.10 |
| 第2组 | [25,35) | b | 0.20 |
| 第3组 | [35,45) | 6 | 0.40 |
| 第4组 | [45,55) | 12 | 0.60 |
| 第5组 | [55,65] | 20 | 0.80 |
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在[35,45)的概率.