题目内容

10.已知[x]表示不大于x的最大整数,设函数f(x)=[log2x],得到下列结论:
结论1:当1<x<2时,f(x)=0;
结论2:当2<x<4时,f(x)=1;
结论3:当4<x<8时,f(x)=2;
照此规律,得到结论10:当29<x<210时,f(x)=9.

分析 根据前3个结论,找到规律,即可得出结论.

解答 解:结论1:当1<x<2时,即20<x<21,f(x)=1-1=0;
结论2:当2<x<4时,即21<x<22,f(x)=2-1=1;
结论3:当4<x<8时,即22<x<23,f(x)=3-1=2,
通过规律,不难得到结论10:当29<x<210时,f(x)=10-1=9,
故答案为:当29<x<210时,f(x)=9.

点评 本题考查归纳推理,考查学生分析解决问题的能力,正确归纳是关键,属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网