题目内容
函数f(x)=
cos2x+sinxcosx-
( x∈[0,
])的取值范围是______.
| 3 |
| ||
| 2 |
| π |
| 4 |
∵函数f(x)=
cos2x+sinxcosx-
=
•
+
sin2x-
=
cos2x+
sin2x=sin(
+2x),0≤x≤
,
∴
≤x≤
,∴
≤sin(
+2x)≤1.
故函数f(x)的值域为[
,1],
故答案为[
,1].
| 3 |
| ||
| 2 |
| 3 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 4 |
∴
| π |
| 3 |
| 5π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
故函数f(x)的值域为[
| 1 |
| 2 |
故答案为[
| 1 |
| 2 |
练习册系列答案
相关题目