题目内容

求函数y=
2x+4
-
x+3
的值域.
函数的定义域由
2x+4≥0
x+3≥0
求得x≥-2.
求导得y′=
1
2x+4
-
1
2
x+3

=
2
x+3
-
2x+4
2
2x+4
x+3

令y′>0得2
x+3
2x+4

2x+4>0
x+3>0
4(x+3)>2x+4
解得x>-2,
即函数y=
2x+4
-
x+3
在(-2,+∞)上是增函数.
又此函数在x=-2处连续,∴在[-2,+∞)上是增函数,而f(-2)=-1.
∴函数y=
2x+4
-
x+3
的值域是[-1,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网