题目内容
设是函数的图象上一点,向量,,且.
数列是公差不为0的等差数列,且,则( )
A.0 B.9 C.18 D.36
已知函数f(x)满足f(x)=f(),当x∈[1,3]时,f(x)=lnx,若在区间[,3]内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是( ).
A.(0,) B.(0,) C.[,) D.[,)
(本小题满分12分)已知△的三边,,所对的角分别为,,,且.
(1)求的值;
(2)若△外接圆的半径为14,求△的面积.
(本小题满分14分)已知圆心在轴上的圆过点和,圆的方程为.
(1)求圆的方程;
(2)由圆上的动点向圆作两条切线分别交轴于,两点,求的取值范围.
在边长为1的正方形中,以为起点,其余顶点为终点的向量分别为,,;以为起点,其余顶点为终点的向量分别为,,.若为的最小值,其中,,则 .
已知函数则( )
A. B. C. D.
(本小题满分13分)设的内角,,所对边的长分别是,,,且,,.
(2)求的值.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,
①证明:平分线段(其中为坐标原点),
②当值最小时,求点的坐标.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆()的左、右焦点分别为、,点,过点且与垂直的直线交轴负半轴于点,且.
(1)求证:△是等边三角形;
(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线与交于、两点,是点关于轴的对称点.在轴上是否存在一个定点,使得、、三点共线,若存在,求出点的坐标;若不存在,请说明理由.