ÌâÄ¿ÄÚÈÝ
ÒÑ֪˫ÇúÏßµÄÖÐÐÄÔÚÔµãO£¬ÆäÖÐÒ»Ìõ×¼Ïß·½³ÌΪx=
£¬ÇÒÓëÍÖÔ²
+
=1Óй²Í¬µÄ½¹µã£®
£¨1£©Çó´ËË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃÒÔÏÒABΪֱ¾¶µÄÔ²¹ýµãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÖصãÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬CÊÇÖ±ÏßL1£ºy=mx+6ÉÏÈÎÒ»µã£¨A¡¢B¡¢CÈýµã²»¹²Ïߣ©ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃ¡÷ABCÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| ||
| 2 |
| x2 |
| 25 |
| y2 |
| 13 |
£¨1£©Çó´ËË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃÒÔÏÒABΪֱ¾¶µÄÔ²¹ýµãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÖصãÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬CÊÇÖ±ÏßL1£ºy=mx+6ÉÏÈÎÒ»µã£¨A¡¢B¡¢CÈýµã²»¹²Ïߣ©ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃ¡÷ABCÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃ£ºc2=12£¬
=
£¬Ôòa2=3£¬b2=9£¬´Ó¶ø¿ÉÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©½«y=kx+3´úÈë
-
=1µÃ£¨3-k2£©x2-6kx-18=0£¬´Ó¶ø¿ÉµÃkµÄ·¶Î§£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬ÓÉÌâÒâÖª£ºOA¡ÍOB£¬Ôòx1x2+y1y2=0£¬´Ó¶ø¿ÉÇóÂú×ãÌõ¼þµÄʵÊýk£»
£¨ÖصãÖÐѧѧÉú×ö£©½«y=kx+3´úÈë
-
=1µÃ£¨3-k2£©x2-6kx-18=0£¬´Ó¶ø¿ÉµÃkµÄ·¶Î§£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬ÓÉÌâÒâÖª£ºA¡¢BÁ½µã¹ØÓÚÖ±ÏßL1¶Ô³Æ£¬´Ó¶ø¿ÉÇóÔòABµÄÖеãDµÄ×ø±ê£¬²¢Âú×ãÖ±ÏßL1µÄ·½³Ìy=-
x+6£¬¹Ê¿ÉÇóÂú×ãÌõ¼þµÄʵÊýk£®
| a2 |
| c |
| ||
| 2 |
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©½«y=kx+3´úÈë
| x2 |
| 3 |
| y2 |
| 9 |
£¨ÖصãÖÐѧѧÉú×ö£©½«y=kx+3´úÈë
| x2 |
| 3 |
| y2 |
| 9 |
| 1 |
| k |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃ£ºc2=12£¬
=
£¬Ôòa2=3£¬b2=9£¬
Òò´ËËùÇóË«ÇúÏߵıê×¼·½³ÌΪ
-
=1£®---£¨4·Ö£©
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
-
=1µÃ£¨3-k2£©x2-6kx-18=0£¬
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
£¼k£¼
£¬k¡Ù¡À
£¬---£¨7·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºOA¡ÍOB£¬Ôòx1x2+y1y2=0£¬---£¨9·Ö£©
ÓÖy1=kx1+3£¬y2=kx2+3£¬
Ôòx1x2+y1y2=(1+k2)x1x2+3k(x1+x2)+9=
=0£¬¼´k=¡À1Âú×ãÌõ¼þ£®---£¨12·Ö£©
£¨ÖصãÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
-
=1µÃ£¨3-k2£©x2-6kx-18=0£¬
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
£¼k£¼
£¬k¡Ù¡À
£¬---£¨7·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºA¡¢BÁ½µã¹ØÓÚÖ±ÏßL1¶Ô³Æ£¬---£¨9·Ö£©
ÔòABµÄÖеãDµÄ×ø±êΪ(
£¬
)£¬
²¢Âú×ãÖ±ÏßL1µÄ·½³Ìy=-
x+6£¬Ôòk=¡À1Âú×ãÌõ¼þ£®---£¨12·Ö£©
| a2 |
| c |
| ||
| 2 |
Òò´ËËùÇóË«ÇúÏߵıê×¼·½³ÌΪ
| x2 |
| 3 |
| y2 |
| 9 |
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
| x2 |
| 3 |
| y2 |
| 9 |
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
| 6 |
| 6 |
| 3 |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºOA¡ÍOB£¬Ôòx1x2+y1y2=0£¬---£¨9·Ö£©
ÓÖy1=kx1+3£¬y2=kx2+3£¬
Ôòx1x2+y1y2=(1+k2)x1x2+3k(x1+x2)+9=
| 9k2-9 |
| k2-3 |
£¨ÖصãÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
| x2 |
| 3 |
| y2 |
| 9 |
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
| 6 |
| 6 |
| 3 |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºA¡¢BÁ½µã¹ØÓÚÖ±ÏßL1¶Ô³Æ£¬---£¨9·Ö£©
ÔòABµÄÖеãDµÄ×ø±êΪ(
| 3k |
| 3-k2 |
| 9 |
| 3-k2 |
²¢Âú×ãÖ±ÏßL1µÄ·½³Ìy=-
| 1 |
| k |
µãÆÀ£º±¾ÌâÒÔÍÖÔ²µÄ±ê×¼·½³ÌÎªÔØÌ壬¿¼²éË«ÇúÏߵıê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëË«ÇúÏßµÄλÖùØÏµ£¬½âÌâµÄ¹Ø¼üÊǽ«ÎÊÌâ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿