题目内容
已知f(n)=(1-
)(1-
)(1-
)…(1-
),g(n)=
(1+
),其中n∈N*.
(1)分别计算f(1),f(2),f(3)和g(1),g(2),g(3)的值;
(2)由(1)猜想f(n)与g(n)(n∈N*)的大小关系,并证明你的结论.
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
(1)分别计算f(1),f(2),f(3)和g(1),g(2),g(3)的值;
(2)由(1)猜想f(n)与g(n)(n∈N*)的大小关系,并证明你的结论.
(1)f(1)=1-
=
,f(2)=(1-
)(1-
)=
,f(3)=(1-
)(1-
)(1-
)=
.
g(1)=
×(1+
)=
,g(2)=
×(1+
)=
,g(3)=
×(1+
)=
.
(2)猜想n=1,f(1)=g(1);n≥2时,f(n)≥g(n).
证明:①当n=1,2时,f(1)=g(1),f(2)>g(2).
②当n=k≥2时,假设f(k)>g(k)成立;
则当n=k+1时,f(k+1)=f(k)(1-
)>
(1+
)(1-
)=
(1+
-
-
)>
(1+
).
即n=k+1时,不等式也成立.
综上可知:不等式对于?n∈N*.不等式都成立.
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 16 |
| 27 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 416 |
| 729 |
g(1)=
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 32 |
| 5 |
| 9 |
| 1 |
| 2 |
| 1 |
| 33 |
| 14 |
| 27 |
(2)猜想n=1,f(1)=g(1);n≥2时,f(n)≥g(n).
证明:①当n=1,2时,f(1)=g(1),f(2)>g(2).
②当n=k≥2时,假设f(k)>g(k)成立;
则当n=k+1时,f(k+1)=f(k)(1-
| 1 |
| 3k+1 |
| 1 |
| 2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 32k+1 |
| 1 |
| 2 |
| 1 |
| 3k+1 |
即n=k+1时,不等式也成立.
综上可知:不等式对于?n∈N*.不等式都成立.
练习册系列答案
相关题目
已知f(n)=
+
+
+…+
,则( )
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n2 |
A、f(n)中共有n项,当n=2时,f(2)=
| ||||||
B、f(n)中共有n+1项,当n=2时,f(2)=
| ||||||
C、f(n)中共有n2-n项,当n=2时,f(2)=
| ||||||
D、f(n)中共有n2-n+1项,当n=2时,f(2)=
|