题目内容
10.已知O为坐标原点,双曲线$C:\frac{x^2}{a^2}-{y^2}=1(a>0)$上有一点P,过点P作双曲线C的两条渐近线的平行线,与两渐近线的交点分别为A,B,若平行四边形OAPB的面积为1,则双曲线C的离心率为( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
分析 求得双曲线的渐近线方程,设P(m,n)是双曲线上任一点,设过P平行于x+ay=0的直线为l,求得l的方程,联立另一条渐近线可得交点A,|OA|,求得P到OA的距离,由平行四边形的面积公式,化简整理,解方程可得a=2,求得c,进而得到所求双曲线的离心率.
解答 解:由双曲线方程可得渐近线方程x±ay=0,
设P(m,n)是双曲线上任一点,设过P平行于x+ay=0的直线为l,
则l的方程为:x+ay-m-an=0,l与渐近线x-ay=0交点为A,
则A($\frac{m+an}{2}$,$\frac{m+an}{2a}$),|OA|=|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{a^2}}$,
P点到OA的距离是:$d=\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$,
∵|OA|•d=1,∴|$\frac{m+an}{2}$|•$\sqrt{1+\frac{1}{a^2}}$.$\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$=1,
∵$\frac{m^2}{a^2}-{n^2}=1$,∴a=2,∴$c=\sqrt{5}$,
∴$e=\frac{{\sqrt{5}}}{2}$.
故选:D.
点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和两直线平行的条件:斜率相等,联立方程求交点,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程与圆(x-$\sqrt{3}$)2+(y-1)2=1相切,则此双曲线的离心率为( )
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
1.要得到函数y=cos(2x-$\frac{π}{3}$)图象,只需将函数y=sin($\frac{π}{2}$+2x)图象( )
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
18.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为( )

| A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $\frac{7}{12}$ | D. | $\frac{11}{18}$ |
5.设F1,F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,若双曲线右支上存在一点P,使得(${\overrightarrow{OP}$+$\overrightarrow{O{F_2}}}$)•$\overrightarrow{{F_2}P}$=0,其中O为坐标原点,且|${\overrightarrow{P{F_1}}}$|=2|${\overrightarrow{P{F_2}}}$|,则该双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
2.下列函数中,x=0是极值点的函数是( )
| A. | y=-x3 | B. | y=x2 | C. | y=tanx-x | D. | y=$\frac{1}{x}$ |
19.双曲线${x^2}-\frac{y^2}{3}=1$的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
20.如图的程序框图输出S的值为( )

| A. | 16 | B. | 32 | C. | 64 | D. | 128 |