题目内容
17.已知矩阵$A=[{\begin{array}{l}a&b\\ c&d\end{array}}]$,若矩阵A属于特征值6的一个特征向量为$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,属于特征值1的一个特征向量为$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{3}\\{-2}\end{array}]$.求A的逆矩阵.分析 根据矩阵特征值和特征向量的性质代入列方程组,求得a、b、c和d的值,求得矩阵A,丨A丨及A*,由A-1=$\frac{1}{丨A丨}$×A*,即可求得A-1.
解答 解:矩阵A属于特征值6的一个特征向量为$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,
∴$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=6$[\begin{array}{l}{1}\\{1}\end{array}]$,即$[\begin{array}{l}{a+b}\\{c+d}\end{array}]$=$[\begin{array}{l}{6}\\{6}\end{array}]$,
属于特征值1的一个特征向量为$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{3}\\{-2}\end{array}]$.
∴$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{3}\\{-2}\end{array}]$=$[\begin{array}{l}{3}\\{-2}\end{array}]$,$[\begin{array}{l}{3a-2b}\\{3c-2d}\end{array}]$=$[\begin{array}{l}{3}\\{-2}\end{array}]$,
∴$\left\{\begin{array}{l}{a+b=6}\\{c+d=6}\\{3a-2b=3}\\{3c-2d=-2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=3}\\{b=3}\\{c=2}\\{d=4}\end{array}\right.$,
矩阵A=$[\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}]$,
丨A丨=$|\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}|$=6,A*=$[\begin{array}{l}{4}&{-3}\\{-2}&{3}\end{array}]$,
A-1=$\frac{1}{丨A丨}$×A*=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$,
∴A-1=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$.
点评 本题考查矩阵的特征值及特征向量的性质,考查逆矩阵的求法,考查计算能力,属于中档题.
| A. | a<-2 | B. | a>2 | C. | a≤-2 | D. | a≥2 |
| A. | 3 | B. | 1 | C. | -1 | D. | -3 |
| A. | (-1,0) | B. | (-1,+∞) | C. | (0,+∞) | D. | (-∞,-1)∪(0,+∞) |
| A. | a2-1 | B. | a2-2a+2 | C. | a2-2a+1 | D. | a2-a+1 |