题目内容
设数列{an}的首项a1=a≠
,且an+1=
,记bn=a2n-1-
,n=l,2,3,….
(Ⅰ)求a2,a3;
(Ⅱ)数列{bn}是否为等比数列,如果是,求出其通项公式;如果不是,请说明理由.
| 1 |
| 4 |
|
| 1 |
| 4 |
(Ⅰ)求a2,a3;
(Ⅱ)数列{bn}是否为等比数列,如果是,求出其通项公式;如果不是,请说明理由.
(Ⅰ)因为数列{an}的首项a1=a≠
,且an+1=
,
所以,a2=a1+
=a+
,a3=
a2=
a+
.
(Ⅱ)数列{an}的首项a1=a≠
,且an+1=
,a3=
a+
.
∴a4=a3+
=
a+
,
∴a5=
a4=
a+
,
所以b1=a1-
=a-
,b2=a3-
=
(a-
),b3=a5-
=
(a-
),
猜想:{bn}是公比为
的等比数列.
证明如下:
因为bn+1=a2n+1-
=
a2n-
=
(a2n-1+
)-
=
(a2n-1-
)=
bn,
所以{bn}是首项为a-
,公比为
的等比数列.
故bn=(a-
)•(
)n-1.
| 1 |
| 4 |
|
所以,a2=a1+
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
(Ⅱ)数列{an}的首项a1=a≠
| 1 |
| 4 |
|
| 1 |
| 2 |
| 1 |
| 8 |
∴a4=a3+
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
∴a5=
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 16 |
所以b1=a1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
猜想:{bn}是公比为
| 1 |
| 2 |
证明如下:
因为bn+1=a2n+1-
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
所以{bn}是首项为a-
| 1 |
| 4 |
| 1 |
| 2 |
故bn=(a-
| 1 |
| 4 |
| 1 |
| 2 |
练习册系列答案
相关题目