题目内容
在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足cos2A-cos2B=cos(
-A)cos(
+A).
(Ⅰ)求角B的值;
(Ⅱ)若b=1,且b<a,求a+c的取值范围.
| π |
| 6 |
| π |
| 6 |
(Ⅰ)求角B的值;
(Ⅱ)若b=1,且b<a,求a+c的取值范围.
考点:余弦定理,三角函数中的恒等变换应用
专题:解三角形
分析:(Ⅰ)由已知化简可得cos2B=
,由题意可得B;
(Ⅱ)由正弦定理可得a=
sinA,c=
sinC,可得a+c=
(sinA+sinC),化简由A的范围可得.
| 1 |
| 4 |
(Ⅱ)由正弦定理可得a=
2
| ||
| 3 |
2
| ||
| 3 |
2
| ||
| 3 |
解答:
解:(Ⅰ)由已知可得cos2A-cos2B=cos(
-A)cos(
+A).
=(
cosA+
sinA)(
cosA-
sinA)=
cos2A-
sin2A
∴cos2B=cos2A-
cos2A+
sin2A=
,
∴cosB=
,B=
;
(Ⅱ)由正弦定理可得
=
=
=
,
∴a=
sinA,c=
sinC,
∴a+c=
(sinA+sinC)=
[sinA+sin(
-A)]
=
[sinA+
cosA+
sinA]=2sin(A+
),
∵B=
,C=
-A<
,∴
<A<
,
∴
<A+
<
,∴
<sin(A+
)≤1,
∴
<2sin(A+
)≤2
∴a+c的取值范围为(
,2]
| π |
| 6 |
| π |
| 6 |
=(
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 4 |
∴cos2B=cos2A-
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴cosB=
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)由正弦定理可得
| a |
| sinA |
| c |
| sinC |
| b |
| sinB |
2
| ||
| 3 |
∴a=
2
| ||
| 3 |
2
| ||
| 3 |
∴a+c=
2
| ||
| 3 |
2
| ||
| 3 |
| 2π |
| 3 |
=
2
| ||
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∵B=
| π |
| 3 |
| 2π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| ||
| 2 |
| π |
| 6 |
∴
| 3 |
| π |
| 6 |
∴a+c的取值范围为(
| 3 |
点评:本题考查解三角形,涉及余弦定理和三角函数的值域,属中档题.
练习册系列答案
相关题目