题目内容

6.用数学归纳法证明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的过程中,假设当n=k时成立,则当n=k+1时,左边f(k+1)=(  )
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

分析 令n=k+1代入f(n)与f(k)进行比较即可得出答案.

解答 解:n=k时,f(k)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$,
当n=k+1时,f(k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$,
=f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.
故选D.

点评 本题考查了数学归纳法的步骤,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网