题目内容
已知数列{an}的前n项和为Sn,且Sn=n2+2n,
(1)求数列{an}的通项公式;
(2)令bn=
,且数列{bn}的前n项和为Tn,求Tn;
(3)若数列{cn}满足条件:cn+1=acn+2n,又c1=3,是否存在实数λ,使得数列{
}为等差数列?
(1)求数列{an}的通项公式;
(2)令bn=
| 1 |
| Sn |
(3)若数列{cn}满足条件:cn+1=acn+2n,又c1=3,是否存在实数λ,使得数列{
| cn+λ |
| 2n |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)利用公式an=
,能求出数列{an}的通项公式.
(2)bn=
=
=
(
-
),由此利用裂项求和法能求出数列{bn}的前n项和.
(3)假设存在这样的实数,满足条件,由
,
,
成等差数列,求出λ=1,此时数列{
}是一个等差数列.
|
(2)bn=
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
(3)假设存在这样的实数,满足条件,由
| 3+λ |
| 2 |
| 9+λ |
| 4 |
| 23+λ |
| 8 |
| cn+1 |
| 2n |
解答:
解:(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…(
-
)+(
-
)+(
-
)]
=
(1+
-
-
)
=
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
,
,
成等差数列,
即2×
=
+
,
解得λ=1,此时
-
=
=
=
=
,
数列{
}是一个等差数列,
∴λ=1.
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 9n2+15n |
| 4(n+1)(n+2) |
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
| 3+λ |
| 2 |
| 9+λ |
| 4 |
| 23+λ |
| 8 |
即2×
| 9+λ |
| 4 |
| 3+λ |
| 2 |
| 23+λ |
| 8 |
解得λ=1,此时
| cn+1+1 |
| 2n+1 |
| cn+1 |
| 2n |
| cn+1=1-2(cn+1) |
| 2×2n |
=
| cn+1-2cn-1 |
| 2×2n |
| 1+2n-1 |
| 2×2n |
| 1 |
| 2 |
数列{
| cn+1 |
| 2n |
∴λ=1.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查使数列为等差数列的实数是否存在的判断与求法,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
执行如图所示的程序语句过程中,循环体执行的次数是( )

| A、0 | B、1 | C、2 | D、3 |