题目内容

已知数列{an}的前n项和为Sn,且Sn=n2+2n,
(1)求数列{an}的通项公式;
(2)令bn=
1
Sn
,且数列{bn}的前n项和为Tn,求Tn
(3)若数列{cn}满足条件:cn+1=acn+2n,又c1=3,是否存在实数λ,使得数列{
cn
2n
}为等差数列?
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)利用公式an=
S1,n=1
Sn-Sn-1,n≥2
,能求出数列{an}的通项公式.
(2)bn=
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,由此利用裂项求和法能求出数列{bn}的前n项和.
(3)假设存在这样的实数,满足条件,由
3+λ
2
9+λ
4
23+λ
8
成等差数列,求出λ=1,此时数列{
cn+1
2n
}是一个等差数列.
解答: 解:(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
9n2+15n
4(n+1)(n+2)

(3)cn+1=acn+2n,即cn+1=2cn+1+2n
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23
3+λ
2
9+λ
4
23+λ
8
成等差数列,
9+λ
4
=
3+λ
2
+
23+λ
8

解得λ=1,此时
cn+1+1
2n+1
-
cn+1
2n
=
cn+1=1-2(cn+1)
2n

=
cn+1-2cn-1
2n
=
1+2n-1
2n
=
1
2

数列{
cn+1
2n
}是一个等差数列,
∴λ=1.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查使数列为等差数列的实数是否存在的判断与求法,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网