题目内容

椭圆C:的左、右焦点分别是F1.F2,离心率为过F,且垂直于x轴的直线被椭圆C截得的线段长为l

(Ⅰ)求椭圆C的方程;

(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;

(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.

设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

答案:
解析:

  (1)

  (2)

  (3)略


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网