题目内容
(2010•唐山二模)A、B是椭圆x2+
=1上的点,O为原点,OA与OB斜率的乘积等于-2,
=
+
.
(I)求证:点C在另一个椭圆上;
(II)求四边形OACB的面积.
| y2 |
| 2 |
| OC |
| OA |
| OB |
(I)求证:点C在另一个椭圆上;
(II)求四边形OACB的面积.
分析:(I)先设A(x1,y1),B(x2,y2),C(x,y),结合直线的斜率公式得kOA•kOB,再利用向量关系式得到:x=x1+x2,y=y1+y1,最后得到点C的坐标适合椭圆的方程,从而证得点C在另一个椭圆上;
(II)设直线OA的斜率为k,则直线OB的斜率为-
,点A坐标方程组
的解,得
=
,同理
=
,|x1+x2|=
.|OA|=
|x1|,|OB|=
|x2|=
|x2|,tan∠AOB=|
|=
•sin∠AOB=
,再由S=2S△AOB=|OA||OB|sin∠AOB
=
|x1|
|x2|
,能求出四边形OACB的面积.
(II)设直线OA的斜率为k,则直线OB的斜率为-
| 2 |
| k |
|
| x | 2 1 |
| 2 |
| k2+2 |
| x | 2 2 |
| k2 |
| k2+2 |
| ||
| k2+2 |
| 1+k2 |
1+(-
|
| ||
| |k| |
k-(-
| ||
1+k•(-
|
| k2+2 |
| |k| |
| k2+2 | ||
|
=
| 1+k2 |
| ||
| |k| |
| k2+2 | ||
|
解答:解:(I)设A(x1,y1),B(x2,y2),C(x,y),则x12+
=1,
+
=1,
且kOA•kOB=
•
=-2,即2x1x2+y1y2=0,…(2分)
=
+
,即(x,y)=(x1,y1)+(x2,y2),
于是x=x1+x2,y=y1+y1,
∴x2=(x1+x2)2
=x12+x22+2x1x2=(1-
)+(1-
)-y1y2=2-
(y1+y2)2=2-
y2,
变形可得
+
=1,
于是,C在椭圆
+
=1上. …(5分)
(II)设直线OA的斜率为k,则直线OB的斜率为-
,
点A坐标方程组
的解,得
=
,同理
=
,∴|x1+x2|=
.…(8分)
|OA|=
|x1|,|OB|=
|x2|=
|x2|,
tan∠AOB=|
|=
•sin∠AOB=
,
S=2S△AOB=|OA||OB|sin∠AOB
=
|x1|
|x2|
=
•
•
=
•
•
•
=
.
| ||
| 2 |
| x | 2 2 |
| ||
| 2 |
且kOA•kOB=
| y1 |
| x1 |
| y2 |
| x2 |
| OC |
| OA |
| OB |
于是x=x1+x2,y=y1+y1,
∴x2=(x1+x2)2
=x12+x22+2x1x2=(1-
| y12 |
| 2 |
| y22 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
变形可得
| x2 |
| 2 |
| y2 |
| 4 |
于是,C在椭圆
| x2 |
| 2 |
| y2 |
| 4 |
(II)设直线OA的斜率为k,则直线OB的斜率为-
| 2 |
| k |
点A坐标方程组
|
| x | 2 1 |
| 2 |
| k2+2 |
| x | 2 2 |
| k2 |
| k2+2 |
| ||
| k2+2 |
|OA|=
| 1+k2 |
1+(-
|
| ||
| |k| |
tan∠AOB=|
k-(-
| ||
1+k•(-
|
| k2+2 |
| |k| |
| k2+2 | ||
|
S=2S△AOB=|OA||OB|sin∠AOB
=
| 1+k2 |
| ||
| |k| |
| k2+2 | ||
|
=
| 1+k2 |
| ||
| |k| |
| k2+2 | ||
|
| ||
| k2+2 |
=
| 1+k2 |
| ||
| |k| |
| k2+2 | ||
|
| ||
| k2+2 |
=
| 2 |
点评:本小题主要考查直线与圆锥曲线的综合问题、直线的斜率等基础知识,考查运算求解能力与转化思想.
练习册系列答案
相关题目