题目内容
11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A、B,左右焦点分别为F1、F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为( )| A. | $\sqrt{5}-2$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
分析 求得A(-a,0),B(a,0),F1(-c,0),F2(c,0),运用等差数列的中项的性质和离心率公式,计算即可得到所求值.
解答 解:由题意可得A(-a,0),B(a,0),F1(-c,0),F2(c,0),
由|AF1|,|F1F2|,|F1B|成等差数列,可得
2|F1F2|=|AF1|+|F1B|,
即为4c=(a-c)+(a+c),
即a=2c,e=$\frac{c}{a}$=$\frac{1}{2}$.
故选:D.
点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法,以及等差数列的中项的性质,考查运算能力,属于中档题.
练习册系列答案
相关题目
1.设集合M={x|x<3},N={x|x>-1},全集U=R,则∁U(M∩N)=( )
| A. | {x|x≤-1} | B. | {x|x≥3} | C. | {x|0<x<3} | D. | {x|x≤-1或x≥3} |
19.已知点M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),若椭圆C:$\frac{{x}^{2}}{a}$+y2=1存在点P使|PM|-|PN|=2$\sqrt{2}$,则a的取值范围是( )
| A. | (0,1) | B. | (1,+∞) | C. | [2,+∞) | D. | [$\sqrt{2}$,+∞) |
16.已知函数$f(x)=2\sqrt{3}sin(3ωx+\frac{π}{3})\;(ω>0)$,若f(x+θ)是周期为2π的偶函数,则θ的一个可能值是( )
| A. | $\frac{4}{3}π$ | B. | $\frac{7}{6}π$ | C. | π | D. | $\frac{5}{6}π$ |
3.将${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展开式中x-4的系数记为an,则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$等于( )
| A. | $\frac{2015}{2016}$ | B. | $\frac{2015}{1008}$ | C. | 2015 | D. | 2016 |
20.
如图给出的是计算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )
| A. | i>1008,n=n+2 | B. | i≤1008,n=n+2 | C. | i>2016,n=n+1 | D. | i>2016,n=n+2 |