题目内容
设数列{an}满足:a1=1,an+1=
(1+4an+
)(n∈N*)
(1)求a2,a3;
(2)令bn=
,求数列{bn}的通项公式;
(3)已知f(n)=6an+1-3an,求证:f(1)•f(2)…f(n)>
.
| 1 |
| 16 |
| 1+24an |
(1)求a2,a3;
(2)令bn=
| 1+24an |
(3)已知f(n)=6an+1-3an,求证:f(1)•f(2)…f(n)>
| 1 |
| 2 |
(1)∵数列{an}满足:a1=1,an+1=
(1+4an+
)(n∈N*),
∴a2=
(1+4a1+
)=
,
a3=
(1+4a2+
)=
(1+4×
+
)=
.
(2)∵bn=
,∴an=
,代入 an+1=
(1+4an+
)(n∈N*) 得
=
(1+4×
+ bn),化简可得 4bn+12=(bn+3)2,即 2bn+1=bn+3.
∴2(bn+1-3)=bn-3,∴{bn-3}是以2为首项,以
为公比的等比数列,
∴bn-3=2(
)n-1,∴bn=(
)n-2+3.
(3)证明:∵已知 an=
=
=
×(
)n+(
)n+
,
故 f(n)=6an+1-3an =6[
×(
)n+1+(
)n+1+
]-3(
×(
)n+(
)n+
)=1-
=(1-
)(1+
).
当n≥2时,有(1+
)•(1-
)=1-
+
-
=1+
>1.
∴f(1)•f(2)…•f(n)=(1-
)(1+
)•(1-
)(1+
)…(1-
)(1+
)
>(1-
)(1+
)=
+
>
.
故要证的不等式 f(1)•f(2)…f(n)>
成立.
| 1 |
| 16 |
| 1+24an |
∴a2=
| 1 |
| 16 |
| 1+24a1 |
| 5 |
| 8 |
a3=
| 1 |
| 16 |
| 1+24a2 |
| 1 |
| 16 |
| 5 |
| 8 |
1+24×
|
| 15 |
| 32 |
(2)∵bn=
| 1+24an |
| bn2-1 |
| 24 |
| 1 |
| 16 |
| 1+24an |
| bn+12-1 |
| 24 |
| 1 |
| 16 |
| bn2-1 |
| 24 |
∴2(bn+1-3)=bn-3,∴{bn-3}是以2为首项,以
| 1 |
| 2 |
∴bn-3=2(
| 1 |
| 2 |
| 1 |
| 2 |
(3)证明:∵已知 an=
| bn2-1 |
| 24 |
(
| ||||
| 24 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
故 f(n)=6an+1-3an =6[
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4n |
=(1-
| 1 |
| 2n |
| 1 |
| 2n |
当n≥2时,有(1+
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 22n-1 |
| 2n-1-1 |
| 22n-1 |
∴f(1)•f(2)…•f(n)=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2n |
| 1 |
| 2n |
>(1-
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
故要证的不等式 f(1)•f(2)…f(n)>
| 1 |
| 2 |
练习册系列答案
相关题目