题目内容
已知{an}是各项都为正数的数列,Sn为其前n项的和,且a1=1,Sn=
.
(I)分别求S22,S32的值;
(II)求数列{an}的通项an;
(III)求证:
.
解:(I)令n=2,得1+a1=
(a2+
)?a2=
-1(舍去负的),
∴s2=
?
=2.
同理,令n=3可得
=3.
(II)∵Sn=
.
∴sn-1=sn-an=
(an-
),(n≥2).
∴
-
=
(an+
)2-
(an-
)2=1.
∴{
}是首项为1,公差为1的等差数列
∴
=n,
∴an=sn-sn-1=
-
,(n≥2).
∴an=
.
(Ⅲ)令bn=2(1-
)=2(1-
),
cn=
=
.
∴bn-bn-1=2(1-
)-2(1-
)
=
=
=
>
=
=cn.
∴bn-bn-1>cn;
∴bn-1-bn-2>cn-1,…b2-b1>c2.
相加得:bn-b1>cn+cn-1+…+c2;
∴bn>cn+cn-1+…+c2+b1;
又∵b1=2(1-
)=2-
>
=c1.
∴bn>cn+cn-1+…+c2+c1;
即
成立.
分析:(I)先把n=2代入Sn=
;求出a2进而求出求S22的值;同理求出S32的值即可.
(II)先根据Sn=
得到sn-1=sn-an=
(an-
),进而得到{
}是首项为1,公差为1的等差数列;得到{
}的通项,进而求出数列{an}的通项;
(III)先令bn=2(1-
)=2(1-
),cn=
=
.再利用放缩法得到bn-bn-1>cn;最后求和整理即可得到结论.
点评:本题主要考察数列与不等式的综合问题.解决本题的关键在于根据Sn=
得到sn-1=sn-an=
(an-
),进而得到{
}是首项为1,公差为1的等差数列;得到{
}的通项.,题后注意体会本题证明不等式的技巧及证明时构造的技巧
∴s2=
同理,令n=3可得
(II)∵Sn=
∴sn-1=sn-an=
∴
∴{
∴
∴an=sn-sn-1=
∴an=
(Ⅲ)令bn=2(1-
cn=
∴bn-bn-1=2(1-
=
=
>
∴bn-bn-1>cn;
∴bn-1-bn-2>cn-1,…b2-b1>c2.
相加得:bn-b1>cn+cn-1+…+c2;
∴bn>cn+cn-1+…+c2+b1;
又∵b1=2(1-
∴bn>cn+cn-1+…+c2+c1;
即
分析:(I)先把n=2代入Sn=
(II)先根据Sn=
(III)先令bn=2(1-
点评:本题主要考察数列与不等式的综合问题.解决本题的关键在于根据Sn=
练习册系列答案
相关题目