题目内容
已知{an}是各项都为正数的数列,其前n项和为Sn,且满足2anSn-an2=1.(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令Tn=
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
|
| 2n-1 |
| n |
分析:(Ⅰ)令n=1,导出a1=1.令n=2,导出a2=
-1.令n=3可解得a3=
-
.
(Ⅱ)由2snan-an=1,an=sn-sn-1,知sn2-sn-12=1,所以s2n=1+n-1=n,an=sn-sn-1=
-
.
(Ⅲ)Tn=1+
+
+
≤1+
+
+
=1+1-1+(1-
)+(
-
)+(
-
)=2-
=
.
| 2 |
| 3 |
| 2 |
(Ⅱ)由2snan-an=1,an=sn-sn-1,知sn2-sn-12=1,所以s2n=1+n-1=n,an=sn-sn-1=
| n |
| n-1 |
(Ⅲ)Tn=1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 | ||
1×
|
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 2n-1 |
| n |
解答:解:(Ⅰ)令n=1则有2a21-a21=1,?a1=1(a1=-1舍去).
令n=2,得2(a1+a2)a2-a22=1,即a22+2a2-1=0.
∴a2=
-1(舍去负值).
同理,令n=3可解得a3=
-
.(3分)
(Ⅱ)∵2snan-an=1,①
又n≥2时有an=sn-sn-1,代入①式并整理得sn2-sn-12=1.
∴sn2是首项为1,公差为1的等差数列.(6分)
∴sn2=1+n-1=n,∴an=sn-sn-1=
-
(n≥2),又a1=1
∴an=
-
.(8分)
(Ⅲ)由(Ⅱ)知Tn=1+
+
+
≤1+
+
+
=1+1-1+(1-
)+(
-
)+(
-
)=2-
=
即Tn≤
.(12分)
令n=2,得2(a1+a2)a2-a22=1,即a22+2a2-1=0.
∴a2=
| 2 |
同理,令n=3可解得a3=
| 3 |
| 2 |
(Ⅱ)∵2snan-an=1,①
又n≥2时有an=sn-sn-1,代入①式并整理得sn2-sn-12=1.
∴sn2是首项为1,公差为1的等差数列.(6分)
∴sn2=1+n-1=n,∴an=sn-sn-1=
| n |
| n-1 |
∴an=
| n |
| n-1 |
(Ⅲ)由(Ⅱ)知Tn=1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 | ||
1×
|
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1+1-1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 2n-1 |
| n |
即Tn≤
| 2n-1 |
| n |
点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目