题目内容

已知{an}是各项都为正数的数列,其前n项和为Sn,且满足2anSn-an2=1.
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令Tn=
1
S
2
1
+
1
2
S
2
2
+…+
1
nS
2
n
,求证Tn
2n-1
n
分析:(Ⅰ)令n=1,导出a1=1.令n=2,导出a2=
2
-1
.令n=3可解得a3=
3
-
2

(Ⅱ)由2snan-an=1,an=sn-sn-1,知sn2-sn-12=1,所以s2n=1+n-1=n,an=sn-sn-1=
n
-
n-1

(Ⅲ)Tn=1+
1
22
+
1
32
+
1
n2
≤1+
1
1
2
+
1
2×3
+
1
(n-1)n
=1+1-1+(1-
1
2
)+(
1
2
-
1
3
)+(
1
n-1
-
1
n
)=2-
1
n
=
2n-1
n
解答:解:(Ⅰ)令n=1则有2a21-a21=1,?a1=1(a1=-1舍去).
令n=2,得2(a1+a2)a2-a22=1,即a22+2a2-1=0.
a2=
2
-1
(舍去负值).
同理,令n=3可解得a3=
3
-
2
.(3分)
(Ⅱ)∵2snan-an=1,①
又n≥2时有an=sn-sn-1,代入①式并整理得sn2-sn-12=1.
∴sn2是首项为1,公差为1的等差数列.(6分)
∴sn2=1+n-1=n,∴an=sn-sn-1=
n
-
n-1
(n≥2),又a1=1
an=
n
-
n-1
.(8分)
(Ⅲ)由(Ⅱ)知Tn=1+
1
22
+
1
32
+
1
n2
≤1+
1
1
2
+
1
2×3
+
1
(n-1)n

=1+1-1+(1-
1
2
)+(
1
2
-
1
3
)+(
1
n-1
-
1
n
)=2-
1
n
=
2n-1
n

Tn
2n-1
n
.(12分)
点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网