题目内容

(2009•重庆模拟)已知{an}是各项都为正数的数列,Sn为其前n项的和,且a1=1,Sn=
1
2
(an+
1
an
)

(I)分别求S22,S32的值;
(II)求数列{an}的通项an
(III)求证:
1
2S1
+
1
3S2
+…+
1
(n+1)Sn
2(1-
1
Sn+1
)
分析:(I)先把n=2代入Sn=
1
2
(an+
1
an
)
;求出a2进而求出求S22的值;同理求出S32的值即可.
(II)先根据Sn=
1
2
(an+
1
an
)
得到sn-1=sn-an=
1
2
(an-
1
an
),进而得到{sn2}是首项为1,公差为1的等差数列;得到{sn2}的通项,进而求出数列{an}的通项;
(III)先令bn=2(1-
1
sn+1
)=2(1-
1
n+1
),cn=
1
(n+1)sn
=
1
(n+1)
n
.再利用放缩法得到bn-bn-1>cn;最后求和整理即可得到结论.
解答:解:(I)令n=2,得1+a1=
1
2
(a2+
1
a2
)⇒a2=
2
-1(舍去负的),
∴s2=
2
s22=2.
同理,令n=3可得s32=3.
(II)∵Sn=
1
2
(an+
1
an
)

∴sn-1=sn-an=
1
2
(an-
1
an
),(n≥2).
sn2-sn-12=
1
4
(an+
1
an
2-
1
4
(an-
1
an
2=1.
∴{sn2}是首项为1,公差为1的等差数列
sn2=n,
∴an=sn-sn-1=
n
-
n-1
,(n≥2).
∴an=
1      (n=1)
n
-
n-1
  (n≥2)

(Ⅲ)令bn=2(1-
1
sn+1
)=2(1-
1
n+1
),
cn=
1
(n+1)sn
=
1
(n+1)
n

∴bn-bn-1=2(1-
1
n+1
)-2(1-
1
n

=
2
n
-
2
n+1
=
2(
n+1
-
n
)
n
n+1

=
2
n
n+1
(
n
+
n+1

2
n
n+1
•(
n+1
+
n+1
)   
=
1
n
(n+1)
=cn
∴bn-bn-1>cn
∴bn-1-bn-2>cn-1,…b2-b1>c2
相加得:bn-b1>cn+cn-1+…+c2
∴bn>cn+cn-1+…+c2+b1
又∵b1=2(1-
1
2
)=2-
2
1
2
=c1
∴bn>cn+cn-1+…+c2+c1
1
2S1
+
1
3S2
+…+
1
(n+1)Sn
2(1-
1
Sn+1
)
成立.
点评:本题主要考察数列与不等式的综合问题.解决本题的关键在于根据Sn=
1
2
(an+
1
an
)
得到sn-1=sn-an=
1
2
(an-
1
an
),进而得到{sn2}是首项为1,公差为1的等差数列;得到{sn2}的通项.,题后注意体会本题证明不等式的技巧及证明时构造的技巧
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网