题目内容
已知|
|=|
|=3,|
|=|
|=4,|
+
|=
,则∠AOB=
.
| OA |
| a |
| OB |
| b |
| a |
| b |
| 37 |
| π |
| 3 |
| π |
| 3 |
分析:由书籍中|
|=|
|=3,|
|=|
|=4,|
+
|=
,利用平方法,可求出
•
=6,代入向量夹角公式,可求出∠AOB的余弦值,进而得到∠AOB的大小.
| OA |
| a |
| OB |
| b |
| a |
| b |
| 37 |
| a |
| b |
解答:解:∵|
|=|
|=3,|
|=|
|=4,|
+
|=
,
∴|
+
|2=|
|2+|
|2+2
•
=25+2
•
=27
故
•
=6
故cos∠AOB=
=
故∠AOB=
故答案为:
| OA |
| a |
| OB |
| b |
| a |
| b |
| 37 |
∴|
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
故
| a |
| b |
故cos∠AOB=
| ||||
|
| 1 |
| 2 |
故∠AOB=
| π |
| 3 |
故答案为:
| π |
| 3 |
点评:本题考查的知识点是平面向量数量积的运算,向量的模,向量的夹角,其中利用平方法求出
•
,利用向量夹角公式,求出∠AOB的余弦值,是解答的关键.
| a |
| b |
练习册系列答案
相关题目