题目内容

8.设p:|4x-3|≤1;q:x2-(2a+1)x+a2+a≤0,若p是q的充分不必要条件,求a的取值范围.

分析 根据一元二次不等式的解法分别求出命题p和q,由p是q的充分不必要条件,可知p⇒q,从而求出a的范围:

解答 解:因为|4x-3|≤1,所以$\frac{1}{2}$≤x≤1,即p:$\frac{1}{2}$≤x≤1.
由x2-(2a+1)x+a2+a≤0,
得(x-a)[(x-(a+1)]≤0,
所以a≤x≤a+1,因为p是q的充分不必要条件,
所以p⇒q,q推不出p.
所以$\left\{\begin{array}{l}{a+1>1}\\{a≤\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a+1≥1}\\{a<\frac{1}{2}}\end{array}\right.$
解得0≤a≤$\frac{1}{2}$.
所以a的取值范围是[0,$\frac{1}{2}$].

点评 本题考查充分条件、必要条件和充要条件,解题时要认真审题,仔细解答,注意不等式组的解法,此题是一道基础题;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网