题目内容

7.给出下列四个命题:
①幂函数一定是奇函数或偶函数;
②任意两个幂函数图象都有两个以上交点;
③如果两个幂函数的图象有三个公共点,那么这两个幂函数相同;
④图象不经过点(-1,1)的幂函数一定不是偶函数
其中为真命题的是④(写出所有真命题的序号)

分析 根据幂函数的定义和性质分别进行判断即可.

解答 解:①幂函数一定是奇函数或偶函数错误,对应函数y=x${\;}^{\frac{1}{2}}$的定义域为[0,+∞),则函数为非奇非偶函数,故①错误;
②任意两个幂函数图象都有两个以上交点,错误,函数y=x-1和y=x${\;}^{\frac{1}{2}}$的交点只有一个(1,1),故②错误
③如果两个幂函数的图象有三个公共点,那么这两个幂函数相同,错误;函数y=x与y=x3有3个交点(0,0),(1,1),(-1,-1),但两个幂函数不相同,故③错误,
④设幂函数为f(x)=xα,若图象不经过点(-1,1),
则f(-1)=(-1)α≠1,则α不是偶数,则幂函数一定不是偶函数,正确,故④正确,
故答案为:④

点评 本题主要考查命题的真假判断,涉及幂函数的定义和性质,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网