题目内容

19.某百货公司1~6月份的销售量x与利润y的统计数据如表:
月份123456
销售量x(万件)1011131286
利润y(万元)222529261612
(1)根据2~5月份的数据,画出散点图,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若由线性回归方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的线性回归方程是理想的,试问所得线性回归方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$;  $\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

分析 (1)根据表中所给的数据,可得散点图;
(2)求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和a的值,写出线性回归方程.
将x=10、6代入回归直线方程判断是否理想即可

解答 解:(1)散点图(如图)…3分
计算得 $\overline{x}=11,\overline{y}=24$,$\sum_{i=2}^{5}$=11×25+13×29+12×26+8×16=1092; $\sum_{i=2}^{5}{{x}_{i}}^{2}=1{1}^{2}+1{3}^{2}+1{2}^{2}+{8}^{2}=498$
则:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$=$\frac{1092-4×11×24}{498-4×1{1}^{2}}=\frac{18}{7}$ $\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=24-$\frac{18}{7}×11=-\frac{30}{7}$
故y关于x的线性回归方程$\widehat{y}=\frac{18}{7}x-\frac{30}{7}$-----7分
(2)当x=10时,$\widehat{y}=\frac{18}{7}×10-\frac{30}{7}=\frac{150}{7}$,此时|$\frac{150}{7}$-22|<2;
当x=6时,$\widehat{y}=\frac{18}{7}×6-\frac{30}{7}=\frac{78}{7}$,此时|$\frac{78}{7}$-22|<2----11分
故所得的线性回归方程是理想的.----12分.

点评 本题考查了线性回归方程的应用问题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网