题目内容
3.已知复数a,b∈R,i是虚数单位,若a-i与2+bi互为共轭复数,则a+bi=( )| A. | 2-i | B. | 1+2i | C. | 1-2i | D. | 2+i |
分析 由a-i与2+bi互为共轭复数,即可求出a,b的值,则a+bi可求.
解答 解:∵a-i与2+bi互为共轭复数,
∴a=2,b=1.
则a+bi=2+i.
故选:D.
点评 本题考查了复数的代数表示法及其几何意义,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
13.已知函数f(x)=x5+ax3+bx-8,且f(-2017)=10,则f(2017)等于( )
| A. | -26 | B. | -18 | C. | -10 | D. | 10 |
14.对武汉市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如表:
(1)从这50人是否赞成“楼市限购政策”采取分层抽样,抽取一个容量为10的样本,问样本中赞成与不赞成“楼市限购政策”的人数各有多少名?
(2)根据以上统计数据填写下面2*2的列联表,并回答是否有95%的把握认为月收入以55百元为分界点对“楼市限购政策”的态度有差异?
(参考公式:${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 月收入(百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 3 | 8 | 12 | 4 | 2 | 1 |
(2)根据以上统计数据填写下面2*2的列联表,并回答是否有95%的把握认为月收入以55百元为分界点对“楼市限购政策”的态度有差异?
| 月收入低于55百元人数 | 月收入不低于55百元人数 | 合计 | |
| 赞成 | a=27 | b=3 | 30 |
| 不赞成 | c=13 | d=7 | 20 |
| 合计 | 40 | 10 | 40 |
| P( K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
11.函数$y=\sqrt{1-x}$的定义域是( )
| A. | {x|0≤x≤1} | B. | {x|x≥0} | C. | {x|x≥1或x≤0} | D. | {x|x≤1} |
15.定义在$(0\;,\;\frac{π}{2})$上的函数f(x),f'(x)是它的导函数,且恒有f(x)•tanx+f'(x)<0成立,则( )
| A. | $\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$ | B. | $\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$ | C. | $f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$ | D. | $\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$ |
3.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,则f(5)的值为( )
| A. | $\frac{3}{2}$ | B. | 1 | C. | 2 | D. | 3 |